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Chaotic Resonance: A Simulation 

Erich Ippen, 1 John Lindner, 1 and Wil l iam L. Di t to  1 

Stochastic resonance is a statistical phenomenon that has been observed in peri- 
odically modulated, noise-driven, bistable systems. The characteristic signatures 
of the effect include an increase in the signal-to-noise of the output as noise is 
added to the system, and exponentially decreasing peaks in the probability 
density as a function of residence times in one state. Presented are the results of 
a numerical simulation where these same signatures were observed by adding 
a chaotic driving term instead of a white noise term. Although the probability 
distributions of the noise and chaos inputs were significantly different, the 
stochastic and chaotic resonances were equal within the experimental error. 
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1. I N T R O D U C T I O N  

S t o c h a s t i c  r e s o n a n c e  (SR) is a s tat is t ical  p h e n o m e n o n  observed in bis table  
systems tha t  are m o d u l a t e d  with bo th  a per iodic  and  a noise drive term. 
W h e n  the sum of the ampl i tudes  of  the drive terms is great  enough,  the 
system m a y  switch between the two stable states. Since the switching is 
dependen t  on bo th  dr iv ing terms,  the t ime intervals  between switches are 
re la ted  to the per iodic  m o d u l a t i o n  signal. Their  re la t ionship  depends  on 
the ampl i tude  of the r a n d o m  noise term. F o r  some ampl i tudes  of noise the 
switching of the system will be very closely re la ted to the m o d u l a t i o n  
signal. 

Two character is t ic  s ignatures  of s tochast ic  resonance  are the increase 
of the ou tpu t  s ignal- to-noise  ra t io  (SNR)  as noise is increased and  a 
specific p robab i l i t y  densi ty  of residence t imes in a given state. If  switching 
between the states is pure ly  r andom,  dr iven only by noise, then the 
p robab i l i t y  of  the system residing in one state for a given a m o u n t  of t ime 
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decreases exponential ly as a function of residence time. As a periodic signal 
is added, switching correlated with the periodic signal occurs. The  system 
tends to remain in one state for times equal  to half-integer multiples of the 
driving period. (1) 

2. C H A O T I C  R E S O N A N C E  

In  m a n y  physical  systems in which stochastic resonance is studied, 
the dynamics  causing the switching m a y  be modeled by an ove rdamped  
particle in a cont inuous  double-well  potential.  (2) Restrict the particle to a 
quart ic  potent ia l  curve given by the equat ion 

X2 kl x4 
U(x)= +k T -  (1) 

\ 

I 

Fig. 1. Time series output of Eq. (5). Time is vertical and amplitude is horizontal. Unfiltered 
motion (left) and filtered motion (right) are for different runs. The filtered motion exhibits 
some anomalous switching events. 
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Add a viscous drag, a periodic modulation, and white noise. The total force 
on the particle is 

m 2  = F ( x )  = - k x  + k ' x  3 - -  b2  + A sin(cot) + A ' ~ ( t )  (2) 

In the limit of large damping, neglect the inertial term m 2  and absorb 
the damping constant b to get the overdamped stochastic Duffing 
equation (11 

2 = - k x  + k ' x  3 q- A sin(cot) + A ' r  (3) 

Propagation of this equation yields a time series governing the posi- 
tion x of the particle. The output of the time series is a result of the two 
time-dependent elements of Eq. (3), the noise term and the periodic term. 
To observe stochastic resonance, the periodic term must be weak enough 
that in the absence of noise, no switching can occur. Note that for zero 
noise input, the time series depends only on the sinusoidal term. 

Since we are simulating a two-state system, we filter the output time 
series so that the output is + 1 if x is positive and - 1  if x is negative. All 
intrawell motion is ignored. (Refer to Fig. 1.) This corresponds to the digi- 

Fig. 2. 
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tal output of a Schmitt trigger or to the direction of lasing in a ring laser. (1) 
The Fourier transform of the output time series extracts the frequency of 
modulation. Data taken from the power spectral density (PSD), the 
absolute square of the Fourier transform, yields the characteristic SNR 
curve. The PSD of the output contains a series of spikes (in theory, Dirac 
deltas (z) at odd integer multiples of the modulation frequency, against a 
background of noise). If no switching occurs, there will be no signal in the 
output time series and the SNR will be zero. 

Typically the switching between wells has been induced with broad- 
band "white" noise, that is, noise whose probability distribution is 
Gaussian (with unit variance and zero mean). The probability distribution 
of our simulation's noise generator (3) is shown in Fig. 2. This output ~(t) 
was multiplied by an amplitude A' to determine the kick A'~(t) given to 
the particle. [-Refer to Eq. (3).] We have shown that it is possible to induce 
switching using a chaos term, specifically, the output of the logistic map, (4) 
rather than a noise term. 

The chaotic driving term is obtained by iterating the logistic map. The 
logistic map gives a discrete time series of numbers on the interval [0, 1 ] 
which, for certain parameters, vary chaotically. For  a given seed xn, the 
next value in the series is given by 

xn+ 1 = 42xn(1 - x ~ )  (4) 

Depending on the parameter 2 and on the initial input seed, the time 
series may converge to a periodic or a chaotic attractor. In our simulation, 
2 was set to 1, a value well known to yield a chaotic attractor. The initial 
value x ,  was 0.123456789. (Certain inputs, for example, 0, 1, 0.25, 0.5, 0.75, 
are stable and do not result in chaos, so it was necessary to choose an 
initial point that would not yield a trivial solution.) Furthermore, the out- 
put is not immediately chaotic and it is often necessary to iterate Eq. (4) 
many times before the output finally frees itself from transient states and 
settles on the attractor. For  our simulation, the output was not used as a 
driving term until the logistic map was iterated 1000 times. 

The output of the logistic map is a chaotic set of numbers between 0 
and 1. In order to have an output that caused switching between both 
wells, we scaled the output to lie between - 1/2 and + 1/2. The probability 
distribution of this output is compared to the Gaussian noise distribution 
in Fig. 2. Both distributions were obtained experimentally from the output 
of the simulation. The logistic distribution has a zero mean; however, the 
most probable outputs are close to ___ 1/2, in contrast to the Gaussian, 
whose most probable output is zero. The output from the logistic map Z(t) 
was multiplied by an amplitude A" to determine the kick A"z(t) given to 
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Table I. Definitions of Data-Taking Regions 
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Parameter Region 1 Region 2 Region 3 

k -2.1078 -5.000 -3.3824 
k' -1.4706 -1.1373 -2.7387 
A 1.3039 4.700 1.775 

0.7304 0.8900 0.8039 

the particle. [-Refer to Eq. (5).] The rate of switching was controlled by 
changing this amplitude. 

For  the equation 

2 = - k x  + k ' x  3 + A sin(~ot) + A'~(t)  + A"•(t) (5) 

the regions which we used in taking data are described in Table I. 
Equation (5) was integrated using a fourth-order Runge-Kutta 

routine. (3~ The time step z was originally set to be 1/50th of the driving 
period. For  large noise values this approximation was no longer good 
enough and the simulation would diverge. For  this reason, the time step 
was halved to 1/100th of the driving period. This worked well for region 1, 
but in the higher noise values of region 2, the approximation again failed 
and the time step had to be halved again. 

3. A N A L Y S I S  OF  S I M U L A T I O N  D A T A  

For a series of noise inputs the simulation program calculated the 
power spectrum of the filtered time series using a fast Fourier transformJ 3~ 
The noise inputs were meant to cover the essential range of the output 
SNRs (initial increase, resonance, and gradual decrease), but it was 
necessary to resolve the maximum so that stochastic and chaotic resonan- 
ces might be compared. The PSD averaged 2k segments of 2M points each, 
where k and M are each powers of 2. For  the data presented, M = 213 and 
k =  24. 

The PSDs displayed a series of peaks at odd integer multiples of the 
driving frequency. The first peak (located at the driving frequency) was, 
however, by far the largest. For region 1, the peak was contained in essen- 
tially two adjacent bins (out of 213 = 8192 bins total in the PSD). The noise 
level at the driving frequency was measured by averaging the values for the 
three bins to the left of the signal peak and the three bins to the right. The 
error in the measurement of the peak height was estimated at about 
+0.001, while the error in the output noise level was the standard 
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Fig. 3. PSDs (from region 1 as the noise amplitude A' is varied. 
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Fig. 4. PSDs (from region 3) as the chaos amplitude A" is varied. 
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deviation of the six measured noise values. This was in general around 
_+ 0.0002, although for very low input noise this was slightly less. 

The resulting signal peaks and noise values were used to plot SNR as 
a function of input noise, where the SNR was defined as 

signal~ 
SNR = 10 loglo 1 + no i se /  (6) 

in decibels. The error in the SNR is due mainly to the standard deviation 
of the noise levels. The scatter is generally a result of noise levels differing 
by as little as 0.0001. Bin leakage posed a problem in measuring the noise 
levels directly adjacent to the bins containing the signal peak. In region 2, 
the peak was contained in at least three, and possibly four, bins. Measure- 
ment of the noise level required taking data from bins at least two bins 
away from the signal peak. Figures 3 and 4 are representative of the data. 

4. R E S U L T S  

Region 1 was the first to be investigated because it combines a very 
small modulation amplitude with a phase space orbit that is very close to 
switching. This means that the region is very prone to switching, but also 
that the signal may be obscured without drastic amounts of noise or chaos. 
The results of the noise- and chaos-induced resonances are shown in Figs. 5 
and 6, respectively. (We attempted to resolve little else than the resonance.) 

2o 

r  ~ .  

z 

18" 

t 7 "  

18" 

lS 

tt 

�9 e ~ ,o ,2 ,, 

Noise Amplitude (arbitrary units) 

Fig. 5. SNR versus noise amplitude in region 1. The resonance is at 21.7-t-0.2 and the 
maximum SNR is 22.0 _+ 0.7 dB. 
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Fig. 6. SNR versus chaos amplitude in region 1. The resonance is at 21.2+0.3 and the 
max imum SNR is 21.5 i 0.7 dB. 

The stochastic resonance (SR) is apparently contained within the six data 
points, while the slightly denser plot of the chaotic resonance (CR) shows 
approximately eight points that could be construed as belonging to the 
resonance (Table II). 

The average SNR is 21.7 _ 0.2 dB for the SR and 21.2 _+ 0.3 dB for the 
CR. The chaos-induced resonance is only slightly less than the stochastic, 
the difference being within the experimental error. The absolute heights of 
the stochastic and chaotic curves are 22.0_+0.7 dB and 21.5_+0.7dB, 
respectively. These are the same within the experimental error, as sum- 
marized in Table IV. One qualitative difference between the data forming 
the two curves is that the chaotic resonance data are much more scattered, 
particularly for low chaos inputs. 

Table I I .  Stochastic Resonance versus Chaotic Resonance in Region 1 

Noise A'  SNR (dB) Chaos  A" SNR (dB) 

5.75 21.6 +_ 0.7 15.0 21.4 • 0.7 
6.0 22.0 _+ 0.7 15.5 21.5 + 0.7 
6.5 21.2 _+ 0.6 16.0 20.7 _+ 0.6 
6.75 21.5 +0.7  16.5 21.3 +0 .6  
7.0 21.7 _+ 0.6 17.0 21.0 _+ 0.6 
7.5 22.0 • 0.7 17.5 20.7 • 0.5 

18.0 21.4 _+ 0.6 
19.0 21.5 + 0.7 
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Fig. 7. 
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SNR versus no~se amplitude in region2. The resonance is at 26.1_+0.3 and the 
maximum SNR is 26.5 _+ 0.5 dB. 

Reg ion  2 has a larger  a m p l i t u d e  a n d  deeper  wells t h a n  reg ion  1, hence  

the r e sonance  is m o r e  robus t .  T h a t  is, it is m o r e  difficult to observe  a 

decrease  in  the SNR.  F u r t h e r m o r e ,  a ze ro -no i se / chaos  phase-space  p lot  
shows  tha t  it is n o t  as close to switching,  so m o r e  no i se / chaos  is r equ i red  

to i nduce  switching.  

The  resul ts  of the P S D s  are  s h o w n  in  Figs. 7 a n d  8, where  the S N R  
is p lo t t ed  versus  the noise  a n d  chaos  ampl i tudes .  The  C R  was found  by  

Fig. 8. 
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SNR versus chaos amplitude in region 2. The resonance is at 26.4___0.4 and the 
maximum SNR is 27 + 1 dB. 
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Table III. Stochastic Resonance versus Chaotic Resonance in Region 2 

Noise A' SNR (dB) Chaos A" SNR (dB) 

20.0 26.5 -+ 0.5 
21.0 26.0 _+ 0.4 
22.0 25.7 -- 0.4 
23.0 26.0 _+ 0.4 
24.0 26.4 + 0.5 

52.0 26.9 _+ 1.0 
54.0 26.0 • 0.9 
56.0 26.0 + 0.9 
58.0 26.0 _+ 0.9 
60.0 26.5 -+ 1.0 
62.0 27.0 -+ 1.0 
64.0 26.0 -+ 0.9 
66.0 27.0 _+ 1.0 

a v e r a g i n g  e ight  p o i n t s  wh ich  a p p e a r e d  to c o n t a i n  the  resonance .  T h e  SR 

was,  l ikewise,  the  ave r age  of  five r e s o n a n c e  po in t s  (Tab le  I I I ) .  

T h e  ave rage  o f  these  po in t s  y ie lded  an  SR of  26.1 _ 0.3 dB a n d  a C R  

of  26.4_+ 0.4 dB. Aga in ,  the  m a g n i t u d e s  of  the r e sonances  are  e q u i v a l e n t  to 

w i th in  the  e x p e r i m e n t a l  error .  

I f  the  SR is s l ight ly  b e l o w  the  CR,  it is p r o b a b l y  due  to an  interest . ing 

ar t i fac t  t ha t  a p p e a r e d  in the  P S D s  of  the  SR t ime  series. T h e  noise  level  

was  ca l cu la t ed  by  a v e r a g i n g  six bins  of  the  P S D  ( three  bins  to the  r igh t  

Table IV. Summary of Regions 1, 2, and 3 at Resonance 

Noise Chaos 

Region 1 
Avg SNR 21.7 _+ 0.2 21.2 _+ 0.3 
Max SNR 22.0 _+ 0.7 21.5 _+ 0.7 
Avg PSD 18.7 4- 0.2 18.4 ___ 0.5 
Max PSD 18.8 _+0.1 18.8 _+0.1 
Avg PSD 1300 _+ 100 1400 _+ 100 

Region 2 
Avg SNR 26.1 _+ 0.3 26.4 _+ 0.4 
Max SNR 26.5 _+ 0.5 27.0 +_ 1.0 
Avg PSD 39.9 -+ 0.2 39.6 _+ 0.2 
Max PSD 40.1 -+ 0.1 39.8 -+ 0.1 
Avg PSD 1000 _+ 100 900 _+ 100 

Region 3 
Avg SNR 21.9 _+ 0.3 21.7 _+ 0.9 
Max SNR 22.2 _+ 0.1 22.2 _+ 0.6 
Avg PSD 34.8 __ 0.7 34.7 _+ 0.5 
Max PSD 36.1 _+0.1 36.1 _+0.1 
Avg PSD 2200 + 100 2100 _+ 100 



Chaotic Resonance: A Simulat ion 447 

and left of the spike). In the bin farthest to the right of the spike, a lump 
appeared that was slightly higher than the noise level in the adjacent bins. 
This occurred only for the noise-induced switching and even then it was 
only apparent at higher noise inputs. Around the resonance, this bin was 
almost a factor of two greater than the surrounding bins. 

Even so, the maximum SNRs were equivalent within the error. If 
the five SNRs corresponding to the SR are recalculated and averaged, 
excluding this one bin, then the resonance is approximately 26.6+0.2, 
slightly larger than than but still close to the CR. The CR induced a 
maximum peak of 39.8_+0.01 as compared to the SR, which attained 
40.1 _+ 0.01. Refer to Table IV. Notice that the noise levels for the SR are 
slightly larger than those for the CR. This is likely a result of the artifact 
mentioned above. 

Finally, we investigated a region lying somewhere between the 
previous two. The frequency and amplitude are slightly greater than those 
for region 1; however, they are considerably less than those for region 2. 
A zero-noise phase-space orbit shows that it is closer to switching than 
region 2, which means that the maximum SNR may be obtained with less 
noise/chaos input. The orbit is most similar to that of region 1. 

The average noise levels are almost equivalent and the results of the 
SNR plots were similar to those obtained for the previous two regions. 
This is summarized in Table VI. Figures 9 and 10 show the SNR plots 
where the apparent resonance points are boxed. The average SNR for the 
SR was 21.9 _ 0.3 dB, compared with 21.7 _+ 0.9 dB for the CR. 

Fig. 9. 
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SNR versus noise amplitude in region 3. The resonance is at 21.9_+0.3 and the 
maximum SNR is 22.2 _+ 1.0 dB. 
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Fig. 10. 
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SNR versus chaos amplitude in region 3. The resonance is at 21.7 +0.3 and the 
max imum SNR is 22.2 _+ 0.6 dB. 

5. RESIDENCE T I M E  D I S T R I B U T I O N S  

One of the defining characteristics of stochastic resonance is the 
residence time probability distribution. In region 2, dwell-time data were 
taken for stochastic as well as chaotic resonance. The distributions are 
shown in Figs. 11 and 12. The SR distribution shows the expected series of 
exponentially decreasing peaks, but also some unexplained gaps (corre- 
sponding to zero probability) appearing within the spikes. This discrepancy 
may be a result of the fact that there was no hysteresis in the switching 
process: Whenever the particle crossed the vertical axis, the filtered output 
would switch. This led to a number of anomalous switching events where 
the particle would cross the center point and, without actually falling into 
the opposite well, would be immediately pushed back into the original well. 
(Refer to Fig. 1.) These very short switches must have affected the probabil- 
ity distribution. Introducing a hysteresis might correct for this problem. To 
investigate this matter further would also require a finer binning of the 
probability histogram (the simulation binned the data in only 128 bins). 
However, the CR yields a probability distribution that is qualitatively 
equivalent to the SR dwell-time distribution. (Refer to Figs. 11 and 12.) 

6. C O N C L U S I O N  

A SNR increase in the output of a bistable system is the defining 
feature of stochastic resonance. It can be seen in Figs. 3-12 that chaos can 
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Fig, 11. SR residence time probability distributions with noise amplitude A' = 5.0. The series 
of spikes of exponentially decreasing heights (linear on the log scale) occur at odd multiples 
of the half period of forcing. ,o01 
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Fig. 12. CR residence time probability distributions with chaos amplitude A"=  13.0. Again, 
the series of spikes of exponentially decreasing heights (linear on the log scale) occur at odd 
multiples of the half period of forcing. 
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induce this effect just as easily as white noise. While the precise shapes of 
the SNR curves may differ, they exhibit the same broad features: steep 
increase in the SNR, resonance, and then a gradual decrease. Furthermore, 
the resonances are practically equivalent. The peak values of Table IV are 
equal to within the experimental error. The implication of this is that white 
noise and the logistic map, despite having drastically different probability 
distributions, produce nearly the same effect. (An important similarity 
between the two distributions is that both are symmetric about zero, 
provided the logistic map is scaled to the interval [ - -  1/2, + 1/2].) 

Any difference between the two resonances is difficult to observe in the 
individual SNR curves. Table IV may, however, provide some insight as to 
general overall trends. The signal-to-noise ratios, calculated from Eq. (6), 
are quite sensitive to small changes in the noise level. It may be more use- 
ful, when comparing stochastic to chaotic resonance, to look at the average 
heights of the spikes in the PSDs while at resonance. It can be seen from 
Table IV that, although all discrepancies are within the experimental error, 
the average height of the SR peaks is consistently, albeit slightly, greater 
than that of the average CR peaks. This would mean that stochastic 
resonance is somewhat stronger than the logistic-map-generated chaotic 
resonance. To prove this would require more statistics. 

An aspect that deserves further investigation is the effect of introducing 
a hysteresis to the switching. There remain unexplained gaps in the 
residence time probability distribution that may relate to this. The effect 
that this would have on the PSDs could be even more important. Finally, 
we have investigated CR with only one form of chaos: the logistic map, 
which provides a symmetric and continuous distribution of kicks to the 
system. Other chaotic terms, possibly with asymmetric or discrete probabil- 
ity distributions, may yield more insight into the nature of stochastic and 
chaotic resonance. 
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